269 research outputs found

    Staphylinidae and Carabidae overwintering in wheat and sown wildflower areas of different age

    Get PDF
    Species richness and abundance of staphylinid and carabid beetles overwintering in winter wheat fields and 1- to 3-year-old wildflower areas were investigated during 2000/2001 on 16 study sites in Switzerland. Abundance and species richness of overwintering staphylinids significantly increased with successional age of the wildflower areas and were always higher in older wildflower areas than in winter wheat. A similar but less distinct pattern was observed for the abundance and species richness of carabid beetles. The influence of habitat parameters (vegetation cover, fine sand content, organic matter, pH, soil pore volume, surrounding landscape structure, habitat area) on the staphylinid and carabid assemblages based on the number of individuals per species and site was analysed using canonical correspondence analysis. Vegetation cover was the most significant parameter significantly characterizing both staphylinid and carabid assemblages. The amount of vegetation cover explained 15.7% of the variance, fine sand content accounted for 13.3% and surrounding landscape structure for 10.9% of the variance in the staphylinid assemblage. In the carabid assemblage, vegetation cover was the only significant factor, explaining 24.7% of the variance. This study showed for the first time that the significance of wildflower areas as a reservoir for hibernation for generalist predatory beetles increases with progressing successional ag

    Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms

    Get PDF
    Insects respond to microbial infection by the rapid and transient expression of several genes encoding potent antimicrobial peptides. Herein we demonstrate that this antimicrobial response of Drosophila is not aspecific but can discriminate between various classes of microorganisms. We first observe that the genes encoding antibacterial and antifungal peptides are differentially expressed after injection of distinct microorganisms. More strikingly, Drosophila that are naturally infected by entomopathogenic fungi exhibit an adapted response by producing only peptides with antifungal activities. This response is mediated through the selective activation of the Toll pathway

    Effects of TNFα receptor TNF-Rp55- or TNF-Rp75- deficiency on corneal neovascularization and lymphangiogenesis in the mouse

    Get PDF
    Tumor necrosis factor (TNF)α is an inflammatory cytokine likely to be involved in the process of corneal inflammation and neovascularization. In the present study we evaluate the role of the two receptors, TNF-receptor (TNF-R)p55 and TNF-Rp75, in the mouse model of suture-induced corneal neovascularization and lymphangiogenesis. Corneal neovascularization and lymphangiogenesis were induced by three 11–0 intrastromal corneal sutures in wild-type (WT) C57BL/6J mice and TNF-Rp55-deficient (TNF-Rp55d) and TNF-Rp75-deficient (TNF-Rp75d) mice. The mRNA expression of VEGF-A, VEGF-C, Lyve-1 and TNFα and its receptors was quantified by qPCR. The area covered with blood- or lymphatic vessels, respectively, was analyzed by immunohistochemistry of corneal flatmounts. Expression and localization of TNFα and its receptors was assessed by immunohistochemistry of sagittal sections and Western Blot. Both receptors are expressed in the murine cornea and are not differentially regulated by the genetic alteration. Both TNF-Rp55d and TNF-Rp75d mice showed a decrease in vascularized area compared to wild-type mice 14 days after suture treatment. After 21 days there were no differences detectable between the groups. The number of VEGF-A-expressing macrophages did not differ when comparing WT to TNF-Rp55d and TNF-Rp75d. The mRNA expression of lymphangiogenic markers VEGF-C or LYVE-1 does not increase after suture in all 3 groups and lymphangiogenesis showed a delayed effect only for TNF-Rp75d. TNFα mRNA and protein expression increased after suture treatment but showed no difference between the three groups. In the suture-induced mouse model, TNFα and its ligands TNF-Rp55 and TNF-Rp75 do not play a significant role in the pathogenesis of neovascularisation and lymphangiogenesis

    In vivo regulation of the IkappaB homologue cactus during the immune response of Drosophila

    Get PDF
    The dorsoventral regulatory gene pathway (spätzle/Toll/cactus) controls the expression of several antimicrobial genes during the immune response of Drosophila. This regulatory cascade shows striking similarities with the cytokine-induced activation cascade of NF-kappaB during the inflammatory response in mammals. Here, we have studied the regulation of the IkappaB homologue Cactus in the fat body during the immune response. We observe that the cactus gene is up-regulated in response to immune challenge. Interestingly, the expression of the cactus gene is controlled by the spätzle/Toll/cactus gene pathway, indicating that the cactus gene is autoregulated. We also show that two Cactus isoforms are expressed in the cytoplasm of fat body cells and that they are rapidly degraded and resynthesized after immune challenge. This degradation is also dependent on the Toll signaling pathway. Altogether, our results underline the striking similarities between the regulation of IkappaB and cactus during the immune response

    The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults

    Get PDF
    The cytokine-induced activation cascade of NF-kappaB in mammals and the activation of the morphogen dorsal in Drosophila embryos show striking structural and functional similarities (Toll/IL-1, Cactus/I-kappaB, and dorsal/NF-kappaB). Here we demonstrate that these parallels extend to the immune response of Drosophila. In particular, the intracellular components of the dorsoventral signaling pathway (except for dorsal) and the extracellular Toll ligand, spätzle, control expression of the antifungal peptide gene drosomycin in adults. We also show that mutations in the Toll signaling pathway dramatically reduce survival after fungal infection. Antibacterial genes are induced either by a distinct pathway involving the immune deficiency gene (imd) or by combined activation of both imd and dorsoventral pathways

    Insect immunity: the diptericin promoter contains multiple functional regulatory sequences homologous to mammalian acute-phase response elements

    Get PDF
    We are using the diptericin gene as a model system to study the control of expression of the genes encoding antibacterial peptides during the Drosophila immune reaction. In order to investigate the putative regulatory regions in the diptericin promoter, we performed DNaseI footprinting experiments combined with gel-shift assays in two inducible systems: the larval fat body and a tumorous Drosophila blood cell line. Our results confirm the importance of kappa B-like elements previously described in the immune response of insects and reveal for the first time the involvement of other regions containing sequences homologous to mammalian acute-phase response elements

    Expression and nuclear translocation of the rel/NF-kappa B-related morphogen dorsal during the immune response of Drosophila

    Get PDF
    The rel/NF-kappa B-related morphogen dorsal is a maternally expressed gene which is involved in the control of the dorso-ventral axis during early embryogenesis of Drosophila. We show that this gene is also expressed in the fat body of larvae and adults of Drosophila as well as in a tumorous blood cell line: its expression is noticeably enhanced upon bacterial (or lipopolysaccharide) challenge. This challenge also induces within 15-30 min a nuclear translocation of the dorsal protein. The genes encoding inducible antibacterial peptides in Drosophila contain kappa B-related nucleotide sequences and we show that the dorsal protein can bind to such motifs and sequence-specifically transactivate a reporter gene in co-transfection experiments with a Drosophila cell line. However, in dl1 mutants, in the absence of dorsal protein, the genes encoding antibacterial peptides retain their inducibility, suggesting a multifactorial control. The results indicate that in addition to its role in embryogenesis, dorsal is involved in the immune response of Drosophila. They also strengthen the analogy between the mammalian acute phase response and the insect immune response

    A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth

    Get PDF
    Cytochromes P450 monooxygenases from the CYP98 family catalyze the meta-hydroxylation step in the phenylpropanoid biosynthetic pathway. The ref8 Arabidopsis (Arabidopsis thaliana) mutant, with a point mutation in the CYP98A3 gene, was previously described to show developmental defects, changes in lignin composition, and lack of soluble sinapoyl esters. We isolated a T-DNA insertion mutant in CYP98A3 and show that this mutation leads to a more drastic inhibition of plant development and inhibition of cell growth. Similar to the ref8 mutant, the insertion mutant has reduced lignin content, with stem lignin essentially made of p-hydroxyphenyl units and trace amounts of guaiacyl and syringyl units. However, its roots display an ectopic lignification and a substantial proportion of guaiacyl and syringyl units, suggesting the occurrence of an alternative CYP98A3-independent meta-hydroxylation mechanism active mainly in the roots. Relative to the control, mutant plantlets produce very low amounts of sinapoyl esters, but accumulate flavonol glycosides. Reduced cell growth seems correlated with alterations in the abundance of cell wall polysaccharides, in particular decrease in crystalline cellulose, and profound modifications in gene expression and homeostasis reminiscent of a stress response. CYP98A3 thus constitutes a critical bottleneck in the phenylpropanoid pathway and in the synthesis of compounds controlling plant development. CYP98A3 cosuppressed lines show a gradation of developmental defects and changes in lignin content (40% reduction) and structure (prominent frequency of p-hydroxyphenyl units), but content in foliar sinapoyl esters is similar to the control. The purple coloration of their leaves is correlated to the accumulation of sinapoylated anthocyanins

    Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila

    Get PDF
    In addition to its function in embryonic development, the NF-kappa B/rel-related gene dorsal (dl) of Drosophila is expressed in larval and adult fat body where its RNA expression is enhanced upon injury. Injury also leads to a rapid nuclear translocation of dl from the cytoplasm in fat body cells. Here we present data which strongly suggest that the nuclear localization of dl during the immune response is controlled by the Toll signaling pathway, comprising gene products that participate in the intracellular part of the embryonic dorsoventral pathway. We also report that in mutants such as Toll or cactus, which exhibit melanotic tumor phenotypes, dl is constitutively nuclear. Together, these results point to a potential link between the Toll signaling pathway and melanotic tumor induction. Although dl has been shown previously to bind to kappa B-related motifs within the promoter of the antibacterial peptide coding gene diptericin, we find that injury-induced expression of diptericin can occur in the absence of dl. Furthermore, the melanotic tumor phenotype of Toll and cactus is not dl dependent. These data underline the complexity of the Drosophila immune response. Finally, we observed that like other rel proteins, dl can control the level of its own transcription
    • …
    corecore